Approximate Span Programs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Span Programs

Span programs are a model of computation that have been used to design quantum algorithms, mainly in the query model. It is known that for any decision problem, there exists a span program that leads to an algorithm with optimal quantum query complexity, however finding such an algorithm is generally challenging. In this work, we consider new ways of designing quantum algorithms using span prog...

متن کامل

On Span Programs

We introduce a linear algebraic model of computation, the Span Program, and prove several upper and lower bounds on it. These results yield the following applications in complexity and cryptography: • SL ⊆ ⊕L (a weak Logspace analogue of NP ⊆ ⊕P). • The first super-linear size lower bounds on branching programs that count. • A broader class of functions which posses information-theoretic secret...

متن کامل

Superpolynomial Lower Bounds for Monotone Span Programs

In this paper we obtain the first superpolynomial lower bounds for monotone span programs computing explicit functions. The best previous lower bound was Ω(n) by Beimel, Gál, Paterson [BGP]; our proof exploits a general combinatorial lower bound criterion from that paper. Our lower bounds are based on an analysis of Paley-type bipartite graphs via Weil’s character sum estimates. We prove an n n...

متن کامل

New Monotone Span Programs from Old

In this paper we provide several known and one new constructions of new linear secret sharing schemes (LSSS) from existing ones. This constructions are well-suited for didactic purposes, which is a main goal of this paper. It is well known that LSSS are in one-to-one correspondence with monotone span programs (MSPs). MSPs introduced by Karchmer and Wigderson, can be viewed as a linear algebra m...

متن کامل

Span programs and quantum query algorithms

Quantum query complexity measures the number of input bits that must be read by a quantum algorithm in order to evaluate a function. Høyer et al. (2007) have generalized the adversary semidefinite program that lower-bounds quantum query complexity. By giving a matching quantum algorithm, we show that the general adversary lower bound is tight for every boolean function. The proof is based on sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithmica

سال: 2018

ISSN: 0178-4617,1432-0541

DOI: 10.1007/s00453-018-0527-1